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What is device-free indoor localization?
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How to solve device-free indoor localization?
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Introduction

How to solve device-free indoor localization?
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Introduction

What is semi-supervised?
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Introduction

How to semi-supervised?
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This is an ordinary VAE*.
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*D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. 2nd International Conference on Learning Representations, ICLR, 2014.



This is the semi-supervised VAE*.

Latent
ux) Variables
z

N

MJWM/\ Encoder

Labeled CSI
(x, y)

NN N
Decoder [l W

Reconstructed CSI
xl

‘F\
WWM/\
Unlabeled CSI
(x,)

Predictions

'

y

*D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semisupervised learning with deep generative models,” in Proc. Neural Information Processing Systems
Conference, NeurlPS, 2014.



Train the semi-supervised VAE with labeled CSI.
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Train the semi-supervised VAE with labeled CSI.
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Train the semi-supervised VAE with unlabeled CSI.
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Semi-Supervised
Generative Adversarial
Network (GAN)



This is an ordinary GAN*.

A\ Il
—>|
Generator RIS

noise Fake CSI e
n Discriminator

Real or fake
q

Real CSI

g This is an ordinary classifier.

—>  Predictions
yl

Real CSI

X
*|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Advances in Neural Information
Processing Systems 27, NeurlPS, 2014.



This is the semi-supervised GAN*.
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Consider the two model with shared weights.
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Train the semi-supervised GAN with labeled CSI.
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Train the semi-supervised GAN with unlabeled CSI.
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Train the semi-supervised GAN with unlabeled CSI.
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Comparison: Localization Performance

More labels

Scenario 1 Scenario 2 Scenario 3
Conference Room Lounge Office

L CNN VAE GAN L CNN VAE GAN L CNN VAE GAN

16 50.9% | 61.7% | 65.8% 14 | 39.9% | 22.2% | 35.6% | 36 | 49.0% | 64.4% | 66.7%

32 63.2% | 58.5% | 67.0% | 28 | 52.8% | 31.4% | 40.7% | 72 66.9% | 70.4% | 70.4%
160 | 75.1% | 73.5% | 78.5% | 140 | 70.5% | 52.2% | 55.4% | 144 | 81.2% | 78.9% | 85.1%
3200 | 81.9% | 72.7% | 77.5% | 5376 | 73.0% | 50.5% | 58.2% | 3600 | 90.0% | 81.1% | 87.1%
6400 | 82.1% | 73.0% | 77.1% | 10752 | 74.0% | 62.7% | 62.0% | 7200 | 92.1% | 87.1% | 83.7%

*The performance is represented by the overall classification accuracy.
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Scenario 1 Scenario 2 Scenario 3
Conference Room Lounge Office
L CNN VAE GAN L CNN VAE GAN L CNN VAE GAN
16 50.9% | 61.7% | 65.8% 14 39.9% | 22.2% | 35.6% 36 49.0% | 64.4% | 66.7%
32 63.2% | 58.5% | 67.0% 28 52.8% | 31.4% | 40.7% 72 66.9% | 70.4% | 70.4%
160 75.1% | 73.5% | 78.5% 140 70.5% | 52.2% | 55.4% 144 81.2% | 78.9% | 85.1%
3200 | 81.9% | 72.7% | 77.5% | 5376 | 73.0% | 50.5% | 58.2% | 3600 | 90.0% | 81.1% | 87.1%

82.1%

73.0%

77.1%

*The performance is represented by the overall classification accuracy.

74.0%

62.0%

92.1%

28



Comparison: Localization Performance
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Comparison: Localization Performance
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Comparison: The Real CSI

CSI Amplitude (Normalized)
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Comparison: Generative Performance
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Comparison: Generative Performance

Scenario 2 Lounge
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Conclusion

1. Semi-supervised VAE and GAN generally exhibit advantages over
supervised CNN in the few labeled data regime, where GAN outperforms
VAE.

2. Noisy CSI data could affect semi-supervised learning more negatively than
supervised learning.

3. The comparative performance of semi-supervised VAE and GAN may be
attributed to their different generative mechanisms and different generative
results.
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