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What is semi-supervised?
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Good result but…
cost too much!

Sounds interesting!
Give it a try!



Deep-Learning-Based Semi-Supervised Method

How to semi-supervised?

Conclusion Methods Experiment DiscussionIntroduction

+ unsupervised generative objective
A supervised model

Classification output

Generative output
Partially labeled data

WHAT WE WANT

Auxiliary objective

benefits

semi-supervised
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Motivation of this study Conclusion Methods Experiment DiscussionIntroduction
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Semi-Supervised Variational Auto-Encoder (VAE) 
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This is an ordinary VAE*.

This is an ordinary classifier.

*D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. 2nd International Conference on Learning Representations, ICLR, 2014.
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Semi-Supervised Variational Auto-Encoder (VAE)
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*D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semisupervised learning with deep generative models,” in Proc. Neural Information Processing Systems
Conference, NeurIPS, 2014.
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Train the semi-supervised VAE with labeled CSI.
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Semi-Supervised Variational Auto-Encoder (VAE)
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Real CSI
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This is an ordinary classifier.
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This is an ordinary GAN*.

*I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Advances in Neural Information 
Processing Systems 27, NeurIPS, 2014.
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This is the semi-supervised GAN*.
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*A. Odena, “Semi-supervised learning with generative adversarial networks,” in Proc. Workshop on Data-Efficient Machine Learning, ICML, 2016
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Consider the two model with shared weights.
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T. Salimans et al, “Improved techniques for training GANs, in Proc. Neural Information Processing Systems Conference, NeurIPS, 2016
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Train the semi-supervised GAN with labeled CSI.
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Conclusion Methods Experiment DiscussionIntroduction

Scenario 1
Conference 
Room
Number of locations (M)
16
Training CSI 
400 per location

Testing CSI 
200 per location

All the indoor environment are at Research Center for Information Technology Innovation, Academia Sinica, Taiwan.
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Conclusion Methods Experiment DiscussionIntroduction

Scenario 2
Lounge
Number of locations (M)
14
Training CSI 
768 per location

Testing CSI 
164 per location

All the indoor environment are at Research Center for Information Technology Innovation, Academia Sinica, Taiwan.
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Conclusion Methods Experiment DiscussionIntroduction

Scenario 3
Office
Number of locations (M)
18
Training CSI 
400 per location

Testing CSI 
100 per location

All the indoor environment are at Research Center for Information Technology Innovation, Academia Sinica, Taiwan.
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Model Setup: CNN Classifier
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Model
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Model Setup: Semi-Supervised VAE Conclusion Methods Experiment DiscussionIntroduction
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Model Setup: Semi-Supervised GAN Conclusion Methods Experiment DiscussionIntroduction
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Comparison: Localization Performance  

Conclusion Methods Experiment DiscussionIntroduction

Scenario 1 
Conference Room

Scenario 2
Lounge

Scenario 3
Office

L CNN VAE GAN L CNN VAE GAN L CNN VAE GAN

16 50.9% 61.7% 65.8% 14 39.9% 22.2% 35.6% 36 49.0% 64.4% 66.7%

32 63.2% 58.5% 67.0% 28 52.8% 31.4% 40.7% 72 66.9% 70.4% 70.4%

160 75.1% 73.5% 78.5% 140 70.5% 52.2% 55.4% 144 81.2% 78.9% 85.1%

3200 81.9% 72.7% 77.5% 5376 73.0% 50.5% 58.2% 3600 90.0% 81.1% 87.1%

6400 82.1% 73.0% 77.1% 10752 74.0% 62.7% 62.0% 7200 92.1% 87.1% 83.7%

M
or

e 
la

be
ls

*The performance is represented by the overall classification accuracy.
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+ 4.1% + 13.4% + 3.3%
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+ 14.9% + 17.7%− 4.3%
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− 11.0% − 9.1%

*The performance is represented by the overall classification accuracy.



Conclusion Methods Experiment DiscussionIntroduction

Comparison: The Real CSI

Scenario 1 Conference Room Scenario 2 Lounge

More noisy!
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Real CSI VAE

Conclusion Methods Experiment DiscussionIntroduction

Comparison: Generative Performance 
Scenario 1  Conference Room

GAN
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Real CSI VAE GAN

Comparison: Generative Performance 
Scenario 2  Lounge
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1. Semi-supervised VAE and GAN generally exhibit advantages over 
supervised CNN in the few labeled data regime, where GAN outperforms 
VAE.

2. Noisy CSI data could affect semi-supervised learning more negatively than 
supervised learning.

3. The comparative performance of semi-supervised VAE and GAN may be 
attributed to their different generative mechanisms and different generative 
results.

Conclusion Methods Experiment DiscussionIntroduction
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Thank you for your attention!
Q&A
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