
實踐 DevOps所需環境的自動化雲端沙箱部署
Automated Cloud Sandbox Deployment for Implementing DevOps

陳啟文, 王凡
CHI-WEN CHEN, FARN WANG
國立臺灣大學電機工程學研究所

Graduate Institute of Electrical Engineering, National Taiwan University

ABSTRACT
 This paper introduces a software framework, called
the” DEVOPSER”, which enables automated cloud
services deployment used to implement the DevOps [1][3]
process. With the DEVOPSER, we can deploy sets of
clouds where every cloud within has its position in the
DevOps workflow. Our work aims at the	 design of the
configuration documents that DEVOPSER needs, as well
as the way to analyze the configuration documents, and
translate them into the Heat Orchestration Template(HOT)
(see 2.2), which enables automated cloud service
deployment. We perform an experiment on the
“DEVOPSER” to verify its capacity and functionality and
show that DEVOPSER can parse our configuration
document and output a valid HOT.
KEY WORLDS: Cloud Computing, DevOps, Open-
source Project, OpenStack, Software Engineering.
1 INTRODUCTION

DevOps is a clipped compound of “software
DEVelopment” and “information technology OPerationS.”
It is a practice focusing on establishing an environment
where building, testing, and releasing software can happen
frequently, rapidly, and more reliably. In traditional
software delivery, developers and the operators work
separately; as a result, there would be a dilemma when the
operators had a problem while they did not know how to
fix it because they were not involved in development. In
order to handle this dilemma, the concept of “DevOps”
was first mentioned in 2008[4]. It is a principle or a
practice that enhances the efficiency of the software
delivery by promoting the collaboration of the software
developers and IT (Information Technology) operator.
Every big software company nowadays adopts its own
DevOps principles. But in general, the DevOps principles
include the following ingredients:
(1) Making sure the application behaves and performs

well in developing and testing.
(2) Creating a delivery pipeline for continuous automated

deployment and testing the application.
(3) Amplifying the feedback loops between developers

and operators.
There are many open-source tools aiming at the

particular stage in the DevOps process; for example,
Jenkins [5] is a CI (Continuous Integration) [6] tool for the
build stage. In this paper, we present a framework which
enables to automatically deploy all the requirements under
the whole life cycle of the DevOps process, not just a tool
used for a particular stage. We call it “DEVOPSER”,
which means that it is a tool for a whole DevOps process.
Every stage in DevOps process for DEVOPSER requires a
SBAT (Sandbox Arrangement Template) in YAML (Yet

Another Markup Language) for its deployment. YAML is
a human-readable data serialization language that is
commonly used for configuration file [7]. We take the
format in YAML to specify the SBAT for the convenience
of parsing as there is a Python package parsing YAML
format. DEVOPSER has the capability of parsing these
SBAT into HOT (see 2.2) and the HOT enable us to
automatically launch cloud services on OpenStack (see
2.1). We call the cloud services deployed by SBAT as the
Sandbox. In our work, each DevOps stage is implemented
by a Sandbox; for example, the Build stage for DevOps
process is implemented by a Build Sandbox. The Sandbox
can be composed of one or more than one machine and
other cloud services.

HOT already has the capability of specifying the
cloud deployment (see 2.2); however; in our work, we
define another configuration document SBAT to specify
the cloud deployment. The reason is that the syntax and
structure of the HOT is much more complicated. In the
HOT, we have to specify everything while deploying a
machine, such as the network configuration to the machine,
which is not the main point when we want to deploy for
the DevOps process; nevertheless, the network
configuration is essential if we want to deploy a valid
machine to use. As a result, the reason that we define SBAT
to implement the automated cloud sandbox deployment is
to simplify the specification and enhance the automated
deployment in the DevOps process.

In order to present our framework as an automated
deployment tool for DevOps process, there are some issues
that have to be considered as the following:
(1) How many SBAT the user has to provide to

implement a DevOps pipeline?
Ans: The DevOps process include three main stages:
(1) Development, (2) Build, (3) Deployment. As a
result, with the SBAT specified each stage, we can
deploy the resources under a DevOps pipeline.

(2) How to make sure that the user can deploy the
environment for Continuous Integration(CI) (see
2.3) and how CI is implemented as it is an
important step for the DevOps process?
Ans: In the SBAT which specifies the Build Sandbox,
we request the user to give a script location URL to set
up the booted environment of the Build Sandbox. And
we perform the CI process with the help of the Jenkins,
which is an open-source tool for Continuous
Integration.

(3) How to ensure that the Sandbox deployment result
meets all the requirements under the DevOps
process?
Ans: The answer of (1) indicates that the DevOps

process includes three main stages. Each stage will
deploy a Sandbox in charge of the assignment at that
stage. If each sandbox is correctly built, we can
convince the validity of the HOT. We know that each
sandbox is specified by SBAT. If there is no error with
the content of the SBAT and no parsing error, the
deployment result can be convinced.

2 PRELIMINARY
2.1 Automated Cloud Service Deployment

We can implement the automated cloud services
deployment by means of the OpenStack [8] [9]. OpenStack
is a free and open-source software and is used for cloud
computing and deployed as an Infrastructure as a service
(IaaS) [10]. The OpenStack platform consists of many
projects [11], such as Nova, which is a cloud-computing
controller, Neutron is a system managing network services,
and the Horizon, which provides the user with a graphical
interface to access other project resources. After
configuring all of the necessary projects, we can easily
launch cloud applications on the OpenStack.
2.2 Heat Orchestration Template

Heat Orchestration Template (HOT) is a template
format [12] that allows users to describe the deployments
of the cloud applications in text file. HOT requires a
specific syntax and structure supported by Heat in the
OpenStack. Heat is a project in the OpenStack which
implements an orchestration engine to automatically
launch multiple composite cloud applications based on the
HOT. As a result, we can launch cloud applications
automatically on the OpenStack by uploading a valid HOT
into the Heat.

heat_template_version: 2015-04-30
resources:
 my_instance:
 type: OS::Nova::Server
 properties:
 image: ubuntu-trusty-x86_64
 flavor: m1.small

 Fig.1 A simplest HOT sample used to deploy a machine
2.3 Continuous Integration(CI)

Continuous Integration is an important step at the
build stage for the DevOps process [13].CI merges all the
developer working copies to mainline, and performs tests
or build in each version of the copies. It implements the
automated build and tests hence prevents the integration
problems. As a result, CI is a key step while implement the
DevOps. We deploy the cloud resources to implement a
Build Sandbox for CI on the OpenStack. The
configurations of the Build Sandbox can be Specified by a
SAT for it.

3 ARCHITECTURE OF THE DEVOPSER

Fig. 2 shows the architecture and the user story of
the DEVOPSER. The DevOps workflow in our work
includes three main stages: Development, Build, and
Deployment. Each stage requires a SBAT to specify for its
deployment. The DEVOPSER loads these SBAT as the
input to produce HOT. Then, we can upload the output
HOT to OpenStack to launch the Sandbox for the stages.

The following in this section describes the design on SBAT,
and the specification for SBAT to deploy each Sandbox
respectively.

Fig. 2 The DEVOPSER architecture and its user story

3.1 Sandbox Arrangement Template
 Sandbox Arrangement Template (SBAT) is a
template input for DEVOPSER. SBAT is used to describe
and configure the deployment of a Sandbox. In our work,
we want to implement DEVOPSER as a platform as a
service (PaaS) [10] cloud application. As we have
mentioned, OpenStack is a IaaS cloud application that
services cloud as the infrastructure, which means that
OpenStack provides the basic elements or components
under requests. However, the deployment for a DevOps
story is usually deploying the machines in charge of
assignments. As a consequence, we simply the process to
launch a valid machine by only requesting the user to
provide environment information of the machine such as
its hardware requirements. Moreover, the configuration on
the machine is another key while deploying the machine
for DevOps since every machine under a DevOps
workflow has its assignment. In other words, we must
emphasize the flexibility on the machine because the user
may want to make machine “versatile.” In order that, we
request the user to give what they want to set up on the
machine in shell script, which enables automatically
performing commands in Linux system. More flexibly, we
define the time phases for the scripts for the users to
enables that the scripts can be performed depend on its
assignments and timing.
3.1 SBAT for the Develop Sandbox

The Develop Sandbox is used for what the
developers will do under a DevOps process. Namely,
before the developers start to develop an application, they
might need to set up the development environment such as
installing tools for their development. After they set up the
environment, they start to program and perform some unit
test on the developing machine to ensure each production
is fit for use. Finally, while developers finish a version, the
source code can be upload to a “Version Control
Repository” (e.g. git). The Develop Sandbox takes charge
of this assignment, and the following Fig.3 illustrates this
process.

Fig.3 User Story of the Development Stage

In order to deploy the requirements for the Develop

Sandbox, the user has to specify the SBAT as shown in Fig.
4. We specify the Develop Sandbox as a virtual machine
that provides a developer environment.

Hostname: “Dev.1”
Application: “Python”
OS: “Ubuntu14”
Flavor:
 cpu: “2” #processor core count
 mem: “4” #RAM in GB
 disk: “20” #storage in GB
SCM(*):
 URL(*):	”https://github.com/developer/DEV.git”
 Pre-Stage(*): ”DEV/init_env.sh”
 Main-Stage(*): “DEV/unit_test.sh”
 Post-Stage(*): “DEV/upload_code.sh”
(*) : Optional

Fig. 4 SBAT for a Develop Sandbox

As Fig. 4 shows, “Hostname”, “Application”, “OS” and
“Flavor” are the four necessary keys in the SBAT for a
Develop Sandbox. The “Flavor” specifies the hardware
requirements of the machine. The “SCM” is short for
“Source Code Management”, which specifies a link and
shell script directory for setting up the machine or for other
assignment. A developer can provide the source code
management URL (e.g. GitHub) to set up the environment
of this develop machine or perform other assignment.

The “Pre-Stage”, the “Main-Stage”, and the “Post-
Stage” are specified as the script directory after they are
cloned to the develop machine. Each script can contain the
commands for shell in Linux to automatically set up the
environment for the machine or perform other assignments.
For instance, we can provide the “URL” linking to a
GitHub repository which has the prepared script that can
be cloned to the built machine and executed in different
time. The “Pre-Stage” script is used in the time before
the developer starts to develop the applications. Usually, it
means the time when the develop machine is just initiated.
The “Main-Stage” script will be performed as the
applications development goes on. Similarly, the “Post-
Stage” script is used to set up the final state of the develop
machine when the developer finishes developing the
application. The “Post-Stage” can be used to upload the

source code to “Version Control Repository”. The “SCM”
section in this SBAT is optional, meaning that it is not
necessary to provide if the developer has no wish to
customize the develop machine or perform some
automated script.

3.2 Build Sandbox

The main purpose of the Build Sandbox is to launch
a CI server for Jenkins, which will integrate the codes from
“Version Control Repository” and automatically compile
the source code to a “Package Repository” in the end. As
we have mentioned, we launch the machines by HOT in
OpenStack; however, the requirements under a CI server
depend on what application is building. If the user just
provides a basic specification without any customized
script to set up the build machine, OpenStack may launch
a raw machine that does not satisfy the requirements of
Jenkins. In other words, it will be a problem to
implementing the Build Sandbox if Jenkins doesn’t work
due to the lack of required resources or invalid system
environment. As a result, the “Pre-Stage” in the “SCM” in
this SBAT is necessary. The user must prepare a script to
set up the environment for the Build Sandbox. After the
Build Sandbox is complete successfully, Jenkins will do its
work and return a build or test report for the users. Finally,
we can compile and release the application by the “Main-
Stage” and “Post-stage” script or just command in the
Build Sandbox.

Fig. 5 User Story of the Build Sandbox.

The Fig.5 illustrates the process of the Build
Sandbox. The specification of the “Pre-Stage” makes sure
that we can enable the Build machine to automatically
build and test the application by Jenkins. Developer can
compile the applications with the “Main-Stage” script and
release it to a Package Repository (e.g. Google Drive)
with the “Post-Stage” Script in the build machine. Fig.6
specifies the SBAT for Build Sandbox. The specification
of this sandbox is almost the same as SBAT for Develop
Sandbox, except a “Pre-Stage” is necessary in this
specification.

Hostname: “Build”
Application: “Python”
OS: “Ubuntu14”
Flavor:

 cpu: “2” #processor core count
 mem: “8” #RAM in GB
 disk: “200” #storage in GB
SCM:
 URL:	”https://github.com/developer/BUILD.git”
 Pre-Stage: ” BUILD /init_env.sh”
 Main-Stage: “BUILD /compile.sh”
 Post-Stage: “BUILD /release.sh”

Fig. 6 SBAT for a Build Sandbox

3.3 Deploy Sandbox
Deploy Sandbox is used to deploying the application

after it was released. At the Deployment stage of the
DevOps processes, the user might request more than one
machine in the deployment of the Deploy Sandbox for the
purpose to establish a database, or a front website
server ... etc. As a result, the specification of the SBAT
for the Deploy Sandbox might be much more complicated
than others.

Fig. 7 User Story of the Development Stage.

Fig.7 illustrates a sample user story and the

architecture of Deploy Sandbox. In this sandbox, more
than one machine is deployed within. Every machine is
work independently but may have a dependency with
each other. Taking Eig.6 for instance, we can see that
Node1 start to launch if and only if Node3 is completed.
Each machine within the Deploy Sandbox is deployed by
one SBAT for the Deploy Sandbox, and has its “Pre-
Stage”, “Main-Stage”, and “Post-Stage” to specify its
customization. Therefore, the way to deploy a machine is
the same as previously, user has to specify the
deployment in one SBAT. And if the user wants to launch
more than one machine with the same configuration, he
can just specify it in the “Hostname” splitting with a “,”.
The difference in this stage is the user has to specify the
“Rely on” if there is a dependency and specify the
“Package” with a URL which links to the package
repository (e.g. a Google Drive link). Following Fig.8
shows the specification of the deployment SBAT for
which the user story is shown in the Fig.7.

Node2 and Node3 is the same machine.
Hostname: “Node2”,“Node3”
Application: “Python”
OS: “Ubuntu14”

Flavor:
cpu: “2” #processor core count
mem: “8” #RAM in GB
disk: “200” #storage in GB

SCM:
URL: ” https://github.com/developer/Deploy.git”
Pre-Stage: ” Deploy /init_env.sh”
Main-Stage(*): ” Deploy /install.sh”
Stage-Stage(*): ” Deploy /run.sh”

Hostname: “Node1”
Rely on: “Node2”,”Node3”
Application: “Python”
OS: “Ubuntu14”
Flavor:
 cpu: “2” #processor core count
 mem: “8” #RAM in GB
 disk: “200” #storage in GB
Package: ” https://drive.google.com/drive/sample.zip”
SCM:
 URL: ” https://github.com/developer/Node1.git”
 Pre-Stage: ” Node1 /init_env.sh”
 Main-Stage: “Node1 / install.sh”
 Post-Stage: “Node1 / run.sh”

Fig.8	SBAT for a Deploy Sandbox

4 IMPLEMENTATION
For the purpose to implement our DEVOPSER, first,

we have to implement a parser which has the capacity of
analyzing these SBAT and generates the specification to
HOT format. Then, uploading these generated HOT to the
OpenStack to approach automated deployment.
Following sections will describe the algorithms and the
functionalities of the parsers within the DEVOPSER:

4.1 DEV. PARSER
Algorithm 1. Dev. Parser
Input:” Devinpt.yaml”
1. data= yaml.load(Input)
2. template = yaml.load(raw_template)
3. if CheckInputFormat(data)==True:
4. ParseInstance (data, template)
5. if (‘SCM’ in data.keys()):
6. if CheckStage(data) ==True:
7. ParseSCM(data.template)
8. Output = yaml.dump(template)
9. end

Algorithm1. illustrates the way to parsing the input

(SBAT for Develop Sandbox) to the HOT format.
ParseInstance() parses the machine deployment of the
input and translate into the description in HOT format.
ParseSCM() parses “SCM” in the input and translate into
the description which enables us to perform the script for
indicated machine in HOT format.

Fig.9 Flow chart of the Dev. PARSER

4.2 BUILD PARSER
Algorithm 2. Build Parser
Input:” Buinpt.yaml”
1. data = yaml.load(Input)
2. template = yaml.load(Build template)
3. if CheckInputFormat(data)==True and

CheckPreStage(data) == True:
4. ParseInstance (data, template)
5. if CheckStage(data) ==True:
6. ParseSCM(data.template)
7. Output = yaml.dump(template)
8. end

Algorithm 2. shows the way to parse the SBAT to a

HOT for the Build Sandbox. The process in this algorithm
is almost the same as Algorithm 1. except there is a
condition added for detecting whether the user specifies
the “Pre-Stage”, as we request a specification in the “Pre-
Stage” to ensure that we can successfully build a CI server
that enables Jenkins.

4.3 DEP. PARSER
Algorithm 3. Dep. Parser
Input:” depinpt.yaml”
1. data = yaml.load(Input)
2. Rely Sort(data) # Scheduling launching order of

the VMs and checking whether there exist a deadlock
3. If Rely Sort(data) return a result:
4. For all VM in data do:
5. ParseInstance (data, template)
6. if CheckStage(data) ==True:
7. ParseSCM(data.template)
8. GiveOrder(template) #To give the VM

rely information and set up the wait condition
9. Output = yaml.dump(template)
10. #Following specify the RelySort:
11. def RelySort(data):
12. if there is no deadlock:
13. Scheduling the data
14. and return the launching order
15. end

Algorithm 3. shows the pseudo code to parse the

SBAT for the Develop Sandbox. The way to parse a single
machine specified in the input to HOT is the same as the
above algorithm that we have mentioned. However, here,
we must count the number of the machines, specifying
each machine with one HOT, handling the launching order

of machines, and detecting whether there exists a deadlock.
In our algorithm; first, after loading the input, RelySort ()
is performed to count the machines and detect the deadlock,
if there is no deadlock, RelySort() will schedule them and
return the result. Next, within the for loop, ParseInstance
() parses the specification of every machine into a single
HOT. Finally, GiveOrder() specify the order in each
machine with the scheduling result of RelySort(). We
implement the process that machine can be launched by its
order by specifying a wait condition syntax descried in
HOT format on each machine.

Fig.10 Flow chart of the DEPLOYMENT PARSER

5 EXPERIMENT

We perform an experiment on the parser in two step to
ensure that the DEVOPSER can produce a valid HOT
which satisfies with what we specified in the SBAT. Step1
is the functionality of the parser, the Step 2 is the validity
of the HOT generated by the parser.
5.1 FUNCTIONALITY OF THE PARSER	 	

As the Dev. Parser and Build Parser are basically
the same, we experiment on each parser for its
functionality with the test cases shown and explained as
following:	
l DEV. PARSER and BUILD PARSER
Fig11. shows a common mistake while specifying the
SBAT with the use of invalid indentation. This kind of
indentation conforms to the YAML format but dose not
conform to our format.

Fig.11 Invalid Indentation on the document

l DEP. PARSER
In the verification for the Dep. Parser, we focus on two
functionalities: Deadlock Detection and the Scheduling, as
the methodology related to input format analysis and the

functionality that translate the specifications in the input
into HOT format is the same for all parser in our work. If
the Dep. Parser can handle the error and have no wrong in
translation, so does the other parser.

Fig.12 A test case with a deadlock

We perform the functionality experiment with the test
cases shown in Fig.11, Fig.12, and Fig.13 on the Dep.
Parser.

 Fig.13 A valid specification test case
5.2 VALIDITY OF THE HOT	

A valid HOT must pass the following criteria:
(1) Passing the syntax parser on the Heat, it means that

there is no syntax error on the HOT.
(2) Every VM (Virtual Machine) launched based on

uploaded HOT is in accordance with its specification
and is built successfully.

(3) Scripts given in “SCM” can be cloned to the machine,
and “Pre-Script” script can perform automatically
when the machine is just initiated. The script is used
for customizing the VM, which is the key to
approaching our DevOps story.

(4) If the user specifies that VM1 relies on the VM2, the
VM1 start to launch if and only if the VM2 has been
complete.

We perform the experiment to test the validity with the
HOT generated by the Dep. Parser with the input sown in
Fig.13. since this test case complies with the format we
defined.

5.3 EXPERIEMENT RESULT
 The result of the experiment on 5.1 shows that our parser
can detect the semantic error in the input as shown in
following:
(1) Invalid Indentation on specifying the “Flavor” and the

“SCM”:	

Fig.14 The result of Fig.11 as the input

(2) A test case with a deadlock

Fig.15 The result of Fig12 as the input.
The experiment on the validity of the HOT is

performed together with the functionality of Scheduling
with the Fig.13 as the input. If the Scheduling function is
work correctly, Dep. Parser generates a valid HOT
theoretically. The Fig.13 shows a SBAT specifying a
Deploy Sandbox. The “java.sh” on the specification for the
“Pre-Stage” on the machine “java” is used to set up a JAVA
Developer Environment on the “java”, the “Main-Stage”
script “add.sh” is used to add a user on the machine, and
the “test.sh” is the script used to output a string on the
screen. The content of the script in detail can be checked
out with the URL specified in the “SCM”. The scripts are
all used to test whether the launched machine will
automatically execute them or not. As a result, the content
of them is not the key in our experiment.

 After we take Fig.13 as an input for the Dep. Parser
and produce a HOT. We upload this HOT to the OpenStack
and check out the deployment result. First, we check out
the launch order by see the “Stack Topology” page on the
Horizon. The “Stack Topology” dynamically illustrated
the process while the Heat launch a HOT. Then, we check
out the build result on the “Instance” page on the Horizon.
As Fig.15 shows, this Deploy Sandbox is launched by the
HOT generated by our Dep. Parser with the SBAT seen in
Fig.13 as the input. Finally, we compile a java file in the
machine to verify whether the script used to set up a JAVA
Developer Environment did its job or not as Fig14 shows.	

Fig.15 The build result shown on the Horizon.

Fig.16 Compile a HelloWorldApp in JAVA on the

machine “java”.

6 CONCLUSION
The experiment results seen in section 5 shows that

the DEVOPESER enables automated deployment for the
Sandboxes used to implementing a DevOps story. Each
Sandbox can be deployed with the configurations
documents that we defined and each Sandbox can be
launch by the OpenStack with the HOT generated by our
DEVOPSER.

In the future, we will find a developing project to
perform the complete DevOps process with those
Sandboxes that is deployed by the SBAT specified the
sandbox of that project. On the other hand, we will finish
the complete task of the build stage by implement the
Jenkins on the build machine after we find out a
application project.

REFERENCES
[1] M. Hüttermann, DevOps for Developers., 2012
[2] D. Chapman, Introduction to DevOps on AWS, 2014
[3] "DevOps is Agile for the Rest of the Company",

DevOps.com.
[4] P Debois ,Agile Infrastructure and Operations: How

Infra-gile are You?, Agile 2008, 2008
[5] Jenkins User Handbook,	 https://jenkins.io/user-

handbook.pdf
[6] P. M. Duvall, S. Matyas, A. Glover, Continuous

Integration: Improving Software Quality and
Reducing Risk,2007

[7] B. Ingerson, C. C. Evans, O. Ben-Kiki
Yet Another Markup Language (YAML)
1.0 ,Working Draft",10 Dec 2001.

[8] OpenStack: Toward an Open-source Solution for
Cloud Computing,	 Sefraoui, Omar; Aissaoui,
Mohammed; Eleuldj, Mohsine. International Journal
of Computer Applications; New York55.3 ,2012.

[9] Rakesh Kumar , Neha Gupta , Shilpi Charu , Kanishk
Jain , Sunil Kumar Jangir, Open Source Solution for
Cloud Computing Platform Using OpenStack,
International Journal of Computer Science and
Mobile Computing, 2014

[10] Qusay F. Hassan ,Demystifying Cloud Computing,	
The Journal of Defense Software Engineering.,2011.

[11] Development resources for OpenStack clouds,	
developer.openstack.org

[12] Heat Orchestration Template Guide,openstack.org
[13] J. Holck and N. Jørgensen, CONTINUOUS

INTEGRATION AND QUALITY ASSURANCE: A
CASE STUDY OF TWO OPEN SOURCE
PROJECTS, Australasian Journal of Information
Systems,2003

[14] S Sharma, DevOps For Dummies, IBM,2014

